Analysis on the stress of the bone surrounding mini-implant with different diameters and lengths under torque.
نویسندگان
چکیده
The purpose of this study is to compare the stress of the bone around the mini-implant under the two kinds of force: the composite force which contains torque and traditional single force. There were 96 finite element models formed by the combination of mini-implant and bone, with diameters of 1.2 mm, 1.6 mm, 2.0 mm and corresponding length being 6 mm, 8 mm, 10 mm, 12 mm, respectively. Each size corresponded to 8 models. Group SF (each size n=4) was loaded with 200 g single force, while Group CF (each size n=4) was loaded with composite force which contained 6N mm torque and 200 g single force. The maximum equivalent stress (Max EQS) of the bone surrounding mini implant with different loading directions was calculated, and the relationship of force direction, diameter and length was also evaluated. The Max EQS of Group CF was higher than that of Group SF. The effect of force direction on the stress was related to the diameter of mini implant, but had nothing to do with its length. The Max EQS of the cortical bone around mini implant in Group CF was higher (P<0.05) than that in Group SF. In contrast, there was no significant difference (P>0.05) between Group SF and Group CF in terms of bone stress when the diameter of mini implant was 1.6 mm or 2.0 mm. In our study, it is demonstrated that the diameter of mini-implant is better to be larger than 1.2 mm when a mini-implant is used in a torque control of tooth. The impact of this feature in the clinical setting needs to be verified.
منابع مشابه
Finite Element Analysis of Bone Stress around Micro-Implants of Different Diameters and Lengths with Application of a Single or Composite Torque Force.
BACKGROUND Stress on the bone surrounding dental micro-implants affects implant success. PURPOSE To compare the stress on the bone surrounding a micro-implant after application of a single force (SF) of 200 g or a composite force (CF) of 200 g and 6 N.mm torque. MATERIALS AND METHODS Finite element models were developed for micro-implant diameters of 1.2, 1.6, and 2.0 mm, and lengths of 6, ...
متن کاملThe axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.
This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...
متن کاملتحلیل المان محدود ایمپلنتهای دندانی در معرض بارگذاری حرارتی
Background and Aims: Dental implants have been studied for replacement of missing teeth for many years. Productivity of implants is extremely related to the stability and resistance under applied loads and the minimum stress in jaw bone. The purpose of this study was to study numerically the 3D model of implant under thermal loads. Materials and Methods: Bone and the ITI implant were modele...
متن کاملGeometrical design characteristics of orthodontic mini-implants predicting maximum insertion torque
OBJECTIVE To determine the unique contribution of geometrical design characteristics of orthodontic mini-implants on maximum insertion torque while controlling for the influence of cortical bone thickness. METHODS Total number of 100 cylindrical orthodontic mini-implants was used. Geometrical design characteristics of ten specimens of ten types of cylindrical self-drilling orthodontic mini-im...
متن کاملEvaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method
longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio-medical materials and engineering
دوره 26 Suppl 1 شماره
صفحات -
تاریخ انتشار 2015